Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 62(6): e202214595, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36422061

RESUMO

A new family of highly unusual sesquarterpenoids (persicamidines A-E) exhibiting significant antiviral activity was isolated from a newly discovered actinobacterial strain, Kibdelosporangium persicum sp. nov., collected from a hot desert in Iran. Extensive NMR analysis unraveled a hexacyclic terpenoid molecule with a modified sugar moiety on one side and a highly unusual isourea moiety fused to the terpenoid structure. The structures of the five analogues differed only in the aminoalkyl side chain attached to the isourea moiety. Persicamidines A-E showed potent activity against hCoV-229E and SARS-CoV-2 viruses in the nanomolar range together with very good selectivity indices, making persicamidines promising as starting points for drug development.


Assuntos
COVID-19 , Coronavirus Humano 229E , Humanos , Antivirais/química , SARS-CoV-2 , Extratos Vegetais
2.
Toxics ; 10(7)2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35878262

RESUMO

Phthalate esters (PAEs) are plasticizers associated with multiple toxicities; however, no strict regulations have been implemented to restrict their use in medical applications in Lebanon. Our study aimed at assessing the potential risks correlated with phthalate exposure from IV bags manufactured in Lebanon. GC-MS analysis showed that di-(2-ethylhexyl) phthalate (DEHP) is the predominant phthalate found in almost all samples tested with values ranging from 32.8 to 39.7% w/w of plastic. DEHP concentrations in the IV solutions reached up to 148 µg/L, as measured by SPME-GC-MS/MS, thus resulting in hazard quotients greater than 1, specifically in neonates. The toxicity of DEHP is mainly attributed to its metabolites, most importantly mono-(2-ethylhexyl) phthalate (MEHP). The IV bag solution with the highest content in DEHP was therefore used to extrapolate the amounts of urinary MEHP. The highest concentrations were found in neonates having the lowest body weight, which is concerning, knowing the adverse effects of MEHP in infants. Our study suggests that the use of IV bags manufactured in Lebanon could pose a significant risk in hospitalized patients, especially infants in neonatal care. Therefore, Lebanon, as well as other countries, should start imposing laws that restrict the use of phthalates in medical IV bags and substitute them with less toxic plasticizers.

3.
Angew Chem Int Ed Engl ; 61(30): e202202816, 2022 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-35485800

RESUMO

The rise of antimicrobial resistance poses a severe threat to public health. The natural product chlorotonil was identified as a new antibiotic targeting multidrug resistant Gram-positive pathogens and Plasmodium falciparum. Although chlorotonil shows promising activities, the scaffold is highly lipophilic and displays potential biological instabilities. Therefore, we strived towards improving its pharmaceutical properties by semisynthesis. We demonstrated stereoselective epoxidation of chlorotonils and epoxide ring opening in moderate to good yields providing derivatives with significantly enhanced solubility. Furthermore, in vivo stability of the derivatives was improved while retaining their nanomolar activity against critical human pathogens (e.g. methicillin-resistant Staphylococcus aureus and P. falciparum). Intriguingly, we showed further superb activity for the frontrunner molecule in a mouse model of S. aureus infection.


Assuntos
Antimaláricos , Malária Falciparum , Staphylococcus aureus Resistente à Meticilina , Animais , Antibacterianos/farmacologia , Antimaláricos/farmacologia , Compostos de Epóxi/farmacologia , Humanos , Camundongos , Testes de Sensibilidade Microbiana , Staphylococcus aureus
4.
Org Lett ; 21(14): 5407-5412, 2019 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-31184172

RESUMO

The structures of five linear lipopeptides, thaxteramides A1, A2, B1, B2, and C isolated from the myxobacterium Jahnella thaxteri, were elucidated. They have a C-terminal common tetrapeptidic Tyr-Gly-ß-Ala-Tyr core but differ in the stereochemistry of the tyrosine units, methylations, the remaining amino acids, and the N-terminal polyketide. In silico analysis of the genome sequence complemented with feeding experiments revealed two distinct hybrid PKS/NRPS gene clusters. Three semisynthesized cyclic analogues were found to inhibit the growth of Gram-positive bacteria.


Assuntos
Lipopeptídeos/biossíntese , Myxococcales/metabolismo , Sequência de Aminoácidos , Simulação por Computador , Lipopeptídeos/química
5.
Elife ; 72018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30558715

RESUMO

New strategies are urgently required to develop antibiotics. The siderophore uptake system has attracted considerable attention, but rational design of siderophore antibiotic conjugates requires knowledge of recognition by the cognate outer-membrane transporter. Acinetobacter baumannii is a serious pathogen, which utilizes (pre)acinetobactin to scavenge iron from the host. We report the structure of the (pre)acinetobactin transporter BauA bound to the siderophore, identifying the structural determinants of recognition. Detailed biophysical analysis confirms that BauA recognises preacinetobactin. We show that acinetobactin is not recognised by the protein, thus preacinetobactin is essential for iron uptake. The structure shows and NMR confirms that under physiological conditions, a molecule of acinetobactin will bind to two free coordination sites on the iron preacinetobactin complex. The ability to recognise a heterotrimeric iron-preacinetobactin-acinetobactin complex may rationalize contradictory reports in the literature. These results open new avenues for the design of novel antibiotic conjugates (trojan horse) antibiotics.


Assuntos
Acinetobacter baumannii/metabolismo , Imidazóis/metabolismo , Ferro/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Oxazóis/metabolismo , Precursores de Proteínas/metabolismo , Cristalografia por Raios X , Imidazóis/química , Espectroscopia de Ressonância Magnética , Proteínas de Membrana Transportadoras/química , Oxazóis/química , Ligação Proteica , Multimerização Proteica , Precursores de Proteínas/química , Oligoelementos/metabolismo
6.
ACS Chem Biol ; 13(5): 1370-1379, 2018 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-29669203

RESUMO

Bacterial infections of agriculturally important mushrooms and plants pose a major threat to human food sources worldwide. However, structures of chemical mediators required by the pathogen for host colonization and infection remain elusive in most cases. Here, we report two types of threonine-tagged lipopeptides conserved among mushroom and rice pathogenic Burkholderia species that facilitate bacterial infection of hosts. Genome mining, metabolic profiling of infected mushrooms, and heterologous expression of orphan gene clusters allowed the discovery of these unprecedented metabolites in the mushroom pathogen Burkholderia gladioli (haereogladin, burriogladin) and the plant pathogen Burkholderia glumae (haereoglumin and burrioglumin). Through targeted gene deletions, the molecular basis of lipopeptide biosynthesis by nonribosomal peptide synthetases was revealed. Surprisingly, both types of lipopeptides feature unusual threonine tags, which yield longer peptide backbones than one would expect based on the canonical colinearity of the NRPS assembly lines. Both peptides play an indirect role in host infection as biosurfactants that enable host colonization by mediating swarming and biofilm formation abilities. Moreover, MALDI imaging mass spectrometry was applied to investigate the biological role of the lipopeptides. Our results shed light on conserved mechanisms that mushroom and plant pathogenic bacteria utilize for host infection and expand current knowledge on bacterial virulence factors that may represent a new starting point for the targeted development of crop protection measures in the future.


Assuntos
Agaricales , Burkholderia/fisiologia , Produtos Agrícolas/microbiologia , Interações Hospedeiro-Patógeno , Lipopeptídeos/metabolismo , Oryza/microbiologia , Treonina/metabolismo , Burkholderia/genética , Genoma Bacteriano , Espectrometria de Massas/métodos , Família Multigênica , Peptídeo Sintases/genética , Espectroscopia de Prótons por Ressonância Magnética
7.
ACS Chem Biol ; 13(3): 801-811, 2018 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-29377663

RESUMO

Cyclic ribosomally derived peptides possess diverse bioactivities and are currently of major interest in drug development. However, it can be chemically challenging to synthesize these molecules, hindering the diversification and testing of cyclic peptide leads. Enzymes used in vitro offer a solution to this; however peptide macrocyclization remains the bottleneck. PCY1, involved in the biosynthesis of plant orbitides, belongs to the class of prolyl oligopeptidases and natively displays substrate promiscuity. PCY1 is a promising candidate for in vitro utilization, but its substrates require an 11 to 16 residue C-terminal recognition tail. We have characterized PCY1 both kinetically and structurally with multiple substrate complexes revealing the molecular basis of recognition and catalysis. Using these insights, we have identified a three residue C-terminal extension that replaces the natural recognition tail permitting PCY1 to operate on synthetic substrates. We demonstrate that PCY1 can macrocyclize a variety of substrates with this short tail, including unnatural amino acids and nonamino acids, highlighting PCY1's potential in biocatalysis.


Assuntos
Descoberta de Drogas , Peptídeos Cíclicos/metabolismo , Plantas/enzimologia , Biocatálise , Compostos Macrocíclicos/síntese química , Prolil Oligopeptidases , Serina Endopeptidases/metabolismo , Especificidade por Substrato
8.
ChemistryOpen ; 6(1): 11-14, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28168143

RESUMO

Natural products comprise a diverse array of molecules, many of which are biologically active. Most natural products are derived from combinations of polyketides, peptides, sugars, and fatty-acid building blocks. Peptidic macrocycles have attracted attention as potential therapeutics possessing cell permeability, stability, and easy-to-control variability. Here, we show that enzymes from the patellamide biosynthetic pathway can be harnessed to make macrocycles that are hybrids of amino acids and a variety of manmade chemical building blocks, including aryl rings, polyethers, and alkyl chains. We have made macrocycles with only three amino acids, one of which can be converted to a thiazoline or a thiazole ring. We report the synthesis of 18 peptide hybrid macrocycles, nine of which have been isolated and fully characterized.

9.
Angew Chem Weinheim Bergstr Ger ; 128(19): 5936-5939, 2016 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-27397939

RESUMO

The macrocyclization of linear peptides is very often accompanied by significant improvements in their stability and biological activity. Many strategies are available for their chemical macrocyclization, however, enzyme-mediated methods remain of great interest in terms of synthetic utility. To date, known macrocyclization enzymes have been shown to be active on both peptide and protein substrates. Here we show that the macrocyclization enzyme of the cyanobactin family, PatGmac, is capable of macrocyclizing substrates with one, two, or three 1,4-substituted 1,2,3-triazole moieties. The introduction of non-peptidic scaffolds into macrocycles is highly desirable in tuning the activity and physical properties of peptidic macrocycles. We have isolated and fully characterized nine non-natural triazole-containing cyclic peptides, a further ten molecules are also synthesized. PatGmac has now been shown to be an effective and versatile tool for the ring closure by peptide bond formation.

10.
Angew Chem Int Ed Engl ; 55(19): 5842-5, 2016 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-27059105

RESUMO

The macrocyclization of linear peptides is very often accompanied by significant improvements in their stability and biological activity. Many strategies are available for their chemical macrocyclization, however, enzyme-mediated methods remain of great interest in terms of synthetic utility. To date, known macrocyclization enzymes have been shown to be active on both peptide and protein substrates. Here we show that the macrocyclization enzyme of the cyanobactin family, PatGmac, is capable of macrocyclizing substrates with one, two, or three 1,4-substituted 1,2,3-triazole moieties. The introduction of non-peptidic scaffolds into macrocycles is highly desirable in tuning the activity and physical properties of peptidic macrocycles. We have isolated and fully characterized nine non-natural triazole-containing cyclic peptides, a further ten molecules are also synthesized. PatGmac has now been shown to be an effective and versatile tool for the ring closure by peptide bond formation.


Assuntos
Peptídeos Cíclicos/química , Triazóis/química , Sequência de Aminoácidos , Ciclização , Peptídeo Hidrolases/metabolismo , Peptídeos Cíclicos/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
11.
Chembiochem ; 16(18): 2646-50, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26507241

RESUMO

Many natural cyclic peptides have potent and potentially useful biological activities. Their use as therapeutic starting points is often limited by the quantities available, the lack of known biological targets and the practical limits on diversification to fine-tune their properties. We report the use of enzymes from the cyanobactin family to heterocyclise and macrocyclise chemically synthesised substrates so as to allow larger-scale syntheses and better control over derivatisation. We have made cyclic peptides containing orthogonal reactive groups, azide or dehydroalanine, that allow chemical diversification, including the use of fluorescent labels that can help in target identification. We show that the enzymes are compatible and efficient with such unnatural substrates. The combination of chemical synthesis and enzymatic transformation could help renew interest in investigating natural cyclic peptides with biological activity, as well as their unnatural analogues, as therapeutics.


Assuntos
Peptídeos Cíclicos/metabolismo , Alanina/análogos & derivados , Alanina/química , Sequência de Aminoácidos , Carbocianinas/química , Química Click , Cobre/química , Reação de Cicloadição , Células HeLa , Humanos , Espectroscopia de Ressonância Magnética , Microscopia de Fluorescência , Peptídeos Cíclicos/química
12.
Chem Commun (Camb) ; 51(61): 12158-69, 2015 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-26144842

RESUMO

The kinetic target-guided synthesis (KTGS) strategy is an unconventional discovery approach that takes advantage of the presence of the biological target itself in order to irreversibly assemble the best inhibitors from an array of building blocks. This strategy has grown over the last two decades notably after the introduction of the in situ click chemistry concept by Sharpless and colleagues in the early 2000s based on the use of the Huisgen cycloaddition between terminal alkynes and azides. KTGS is a captivating area of research offering an unprecedented and powerful strategy to probe the macromolecular complexity and dynamics of biological targets. After a brief introduction listing all chemical ligation reactions reported to date in KTGS, this review focuses on the last five years' progress to expand the repertoire of the click or "click-like" tool box targeting proteins, as well as to overcome limitations arising in particular from false negatives, i.e. potent ligands that are not formed, or formed in undetectable trace amounts. Furthermore, we wish to analyze the new twists and novelties described in some of these applications in order to better understand the conditions that govern this strategy and the extent to which it can be developed and generalized for a more efficient process.


Assuntos
Ligantes , Substâncias Macromoleculares/síntese química , Proteínas/antagonistas & inibidores , Proteínas/metabolismo , Química Click , Humanos , Cinética , Substâncias Macromoleculares/química
13.
Chem Commun (Camb) ; 50(16): 2043-5, 2014 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-24418813

RESUMO

The irreversible Michael addition of thiols to acrylamides is reported as a new tool for the kinetic target-guided synthesis. In an unprecedented enzymatic hydrolysis/thio-Michael addition procedure, potent and selective acetylcholinesterase inhibitors are assembled by the enzyme using both its esterasic and templating ability.


Assuntos
Acetilcolinesterase/metabolismo , Acrilamidas/metabolismo , Inibidores da Colinesterase/farmacologia , Compostos de Sulfidrila/metabolismo , Acetilcolinesterase/química , Acrilamidas/química , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/química , Hidrólise , Cinética , Estrutura Molecular , Compostos de Sulfidrila/química
14.
Org Biomol Chem ; 12(1): 156-61, 2014 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-24216754

RESUMO

The enzyme-directed synthesis is an emerging fragment-based lead discovery approach in which the biological target is able to assemble its own multidentate ligands from a pool of building blocks. Here, we report for the first time the use of the human acetylcholinesterase (AChE) as an enzyme for the design and synthesis of new potent heterodimeric huprine-based inhibitors. Both the specific click chemistry site within the protein and the regioselectivity of the Huisgen cycloaddition observed suggest promising alternatives in the design of efficient mono- and dimeric ligands of AChE. Finally, a detailed computational modelling of the click reaction was conducted to further understand the origin of this TGS selectivity.


Assuntos
Acetilcolinesterase/metabolismo , Aminoquinolinas/farmacologia , Inibidores da Colinesterase/farmacologia , Aminoquinolinas/química , Aminoquinolinas/metabolismo , Inibidores da Colinesterase/química , Inibidores da Colinesterase/metabolismo , Química Click , Ciclização , Humanos , Ligantes , Modelos Moleculares , Estrutura Molecular , Proteínas Recombinantes/metabolismo , Estereoisomerismo
15.
Chem Commun (Camb) ; 48(5): 768-70, 2012 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-22117230

RESUMO

A general and single-step access to polysubstituted 3-hydroxypyridine scaffolds via hetero-Diels-Alder (HDA) reactions between readily prepared 5-ethoxyoxazoles and dienophiles is reported. The HDA reaction, run in the presence of Nd(OTf)(3) at room temperature, was successfully applied to various 5-ethoxyoxazoles showing good functional group tolerance, and led to a straightforward process to obtain useful building-blocks.


Assuntos
Alcenos/química , Química Farmacêutica/métodos , Oxazóis/química , Piridinas/síntese química , Catálise , Ciclização , Compostos Heterocíclicos com 3 Anéis/química , Estrutura Molecular , Neodímio/química , Estereoisomerismo , Vitamina B 6/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...